skip to main content


Search for: All records

Creators/Authors contains: "Farrar, Glennys R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Telescope Array Collaboration recently reported the detection of a cosmic-ray particle, “Amaterasu,” with an extremely high energy of 2.4 × 1020eV. Here we investigate its probable charge and the locus of its production. Interpreted as a primary iron nucleus or slightly stripped fragment, the event fits well within the existing paradigm for UHECR composition and spectrum. Using the most up-to-date modeling of the Galactic magnetic field strength and structure, and taking into account uncertainties, we identify the likely volume from which it originated. We estimate a localization uncertainty on the source direction of 6.6% of 4πor 2726 deg2. The uncertainty of magnetic deflections and the experimental energy uncertainties contribute about equally to the localization uncertainty. The maximum source distance is 8–50 Mpc, with the range reflecting the uncertainty on the energy assignment. We provide sky maps showing the localization region of the event and superimpose the location of galaxies of different types. There are no candidate sources among powerful radio galaxies. An origin in active galactic nuclei or star-forming galaxies is unlikely but cannot be completely ruled out without a more precise energy determination. The most straightforward option is that Amaterasu was created in a transient event in an otherwise undistinguished galaxy.

     
    more » « less
  2. We report on several new results using anisotropies of UHECRs. We improve and extend the work of Ding, Globus and Farrar, who modeled the UHECR dipole assuming sources follow the dark matter distribution, accounting for deflections in the Galactic and extragalactic magnetic fields but using a simplified treatment of interactions during propagation. The work presented here employs an accurate and self-consistent treatment of the evolution of composition during propagation, allows for and explores the impact of “bias” in the relation between UHECR sources and the dark matter distribution, and investigates the possible generation of arrival-direction-dependent composition anisotropies. Limits on the source number density consistent with the observed anisotropies are derived for the case where UHECR sources follow the dark matter distribution, and compared to a homogeneous source distribution case. 
    more » « less
  3. Free, publicly-accessible full text available July 25, 2024
  4. Abstract

    Interactions of ultra-high-energy cosmic rays (UHECRs) in the surroundings of their accelerators can naturally explain the observed spectrum and composition of UHECRs, including the abundance of protons below the ankle. Here we show that astrophysical properties of the UHECR source environment such as the temperature, size, and magnetic field can be constrained by UHECR and neutrino data. Applying this to candidate sources with a simple structure shows that starburst galaxies are consistent with these constraints, but galaxy clusters are in tension with them. For multicomponent systems like active galactic nuclei and gamma-ray bursts, the results are indicative, but a customized analysis is needed for definitive conclusions.

     
    more » « less
  5. Abstract A rotation curve inequality that holds for spherically symmetric mass distributions is derived, and tested against the SPARC galaxy rotation curves dataset. We identify several Galaxies, e.g. NGC7793 and UGC11557, which are candidates for hosting non-spherical dark matter structures that could be detected by more precise measurements. 
    more » « less
  6. null (Ed.)
  7. Abstract

    We have constructed a catalog of active galactic nuclei (AGNs) withz< 0.13, based on optical spectroscopy, from the parent sample of galaxies in the Six-Degree Field (6dF) galaxy survey (Final Release of 6dFGS), a census of the Southern Hemisphere. This work is an extension of our all-sky AGN catalog in Zaw et al. (ZCF, hereafter). The ZCF is based on 43,533 galaxies withKs≤ 11.75 (z≤ 0.09) in the Two Micron All-Sky Survey (2MASS) Redshift Survey (2MRS). The parent catalog of this work, the 6dF catalog, consists of 136,304 publicly available digital spectra for 125,071 galaxies with decl. ≤ 0° andKs≤ 12.65 (medianz= 0.053). Our AGN catalog consists of 3109 broadline AGNs and 12,156 narrowline AGNs which satisfy the 2003 criteria, of which 3865 also satisfy the 2001 criteria. We also provide emission-line widths, fluxes, flux errors, and signal-to-noise ratios of all the galaxies in our spectroscopic sample, allowing users to customize the selection criteria. In addition, we provide the AGN likelihood for the rest of galaxies based on the availability and quality of their spectra. These likelihood values can be used for rigorous statistical analyses.

     
    more » « less